Zöe Drivetrain \\& Wheels

Life in the Atacama Design Review
December 19, 2003

Stuart Heys \\& Dan Villa
Description and Motivation

• Improve upon existing Hyperion drivetrain
 • Less backlash (no chains)
 • Higher efficiency (w.r.t. packaging as well as power)
 • Higher torque capacity
 • Higher top speed
 • Smaller part count (improved reliability)

• More appropriate wheel selection
 • Optimized interface to drivetrain
 • Wider contact patch for soft soils
Current Design

• Match motor/drive as closely as possible to speed and voltage requirements
 • Custom wound motor
• Efficient, high torque capacity harmonic drive gearing
• Compact, lightweight thin section output bearings with reliable seals
 • Entire drive assembly environmentally isolated
Drivetrain Packaging

- Complete drive system contained within axle
 - Concealed wiring
 - Sealed motor and gearing
Single Wheel Testbed

• Single wheel testbed created to qualify drivetrain and wheel options
 • Power data used to confirm new motor selection
 • 3 Wheels tested
 • Existing Hyperion bicycle wheel (26x1.75”)
 • Motorcycle wheel (28x3”)
 • Large diameter bicycle wheel (27.5x3”)
 • Drivetrain to be prototyped and endurance tested early 2004
Initial Wheel Tests

48V: Average Power vs. Weight

(speeds are commanded speeds, not necessarily attained, especially at 0.45 m/s)
Closing in on Zoe Wheel…

Power vs. Weight

Average Power (W)

Weight (kg)

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

15 cm/s

30 cm/s

45 cm/s
Recommendations

• 24” bicycle rim with 3” wide tire combined with custom machined hub
 • Slightly smaller in diameter than Hyperion wheel
 • Custom hub allows for optimized wheel mounting
 • Low weight
 • Short integration time
 • Simple, reliable solution

• Further testing to be done with mock-up of new drive system on single wheel testbed (new wheel, motor, gearing, amp)
 • 100km endurance test to insure reliability

• Custom wheel designs may be considered if time allows