Exploration Systems

Program Overview

July 15, 2004
Associate Administrator,
Office of Exploration Systems
Rear Admiral Craig E. Steidle (Ret.)
The Vision for Space Exploration

THE FUNDAMENTAL GOAL OF THIS VISION IS TO ADVANCE U.S. SCIENTIFIC, SECURITY, AND ECONOMIC INTEREST THROUGH A ROBUST SPACE EXPLORATION PROGRAM

Implement a sustained and affordable human and robotic program to explore the solar system and beyond

Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations;

Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration; and

Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests.
1. Return the Shuttle to safe flight as soon as practical, based on CAIB recommendations
2. Use Shuttle to complete ISS assembly
3. Retire the Shuttle after assembly complete (2010 target)
4. **Focus ISS research to support exploration goals**: understanding space environment and countermeasures
5. Meet foreign commitments
6. **Undertake lunar exploration** to support sustained human and robotic exploration of Mars and beyond
7. Series of **robotic missions to Moon** by 2008 to prepare for human exploration
8. **Expedition to lunar surface** as early as 2015 but no later than 2020
9. **Use lunar activities to further science**, and test approaches (including lunar resources) for exploration to Mars & beyond
10. **Conduct robotic exploration of Mars** to prepare for future expedition
11. **Conduct robotic exploration across solar system** to search for life, understand history of universe, search for resources
12. **Conduct advanced telescope searches** for habitable environments around other stars
13. ** Demonstrate** power, propulsion, life support capabilities for long duration, more distant human and robotic missions
14. **Conduct human expeditions to Mars** after acquiring adequate knowledge and capability demonstrations
15. **Develop a new Crew Exploration Vehicle**: flight test before end of decade; human exploration capability by 2014
16. **Separate cargo from crew** as soon as practical to support ISS; acquire crew transport to ISS after Shuttle retirement
17. **Pursue international participation**
18. **Pursue commercial opportunity** for transportation and other services
Key Elements of the Vision

• Objectives
  – Implement a sustained and affordable human and robotic program
  – Extend human presence across the solar system and beyond
  – Develop supporting innovative technologies, knowledge, and infrastructures
  – Promote international and commercial participation in exploration

• Major Milestones
  – 2008: Initial flight test of CEV
  – 2008: Launch first lunar robotic orbiter
  – 2009-2010: Robotic mission to lunar surface
  – 2011 First Unmanned CEV flight
  – 2014: First crewed CEV flight
  – 2012-2015: Jupiter Icy Moon Orbiter (JIMO)/Prometheus
  – 2015-2020: First human mission to the Moon
Preparing for Mars Exploration

- **Moon as a test bed to reduce risk for future human Mars missions**
  - **Technology advancement** reduces mission costs and supports expanded human exploration
  - **Systems testing** and technology test beds to develop reliability in harsh environments.

- **Expand mission and science surface operations** experience and techniques

- **Human and machine collaboration**: Machines serve as an extension of human explorers, together achieving more than either can do alone

- **Breaking the bonds of dependence on Earth**: (e.g./Life Science/Closed loop life support tests)

- **Power generation and propulsion** development and testing

- **Common investments** in hardware systems for Moon, Mars and other space objectives
Exploration Systems: Building on Past Findings and Lessons Learned

- **Packard Commission Findings**
  - Get operators and technologists together to enable the leveraging of cost-performance trades
  - Apply technology to lower cost of system, not just to increase its performance
  - Mature technology prior to entering engineering and systems development
  - Partnerships with Industry to identify innovative solutions

- **Report of the DSB/AFSAB (Young Report)**
  - Requirements definition and control are dominant drivers of cost, schedule, and risk in space systems development programs
Building on Lessons-Learned

• Task
  – Develop a consolidated database of Lessons-Learned from human and robotic mission experience. Sample review areas:
    • Space Station / Shuttle
    • CAIB / Challenger report
    • Previous NASA reviews
    • Etc.

• Actions
  – Initiated task with Systems Management office at Langley Research Center. Topic areas defined to include:
    • Cultural Issues
    • Programmatic considerations
    • Technical/Engineering considerations
    • Communications
    • Ground Operations
    • Risk Assessment
EXPLORATION SYSTEMS ENTERPRISE
OVERARCHING PRINCIPLES

Corporate Focus
To advance the Vision for Space Exploration in tandem with other NASA Enterprises

Focused, Prioritized Requirements
Targeted to demonstrate sustainable and affordable success in human and robotic exploration

Spiral Transformation
Develop capabilities in stages (spirals) with evolving, modular components
Maturation of technologies for inclusion in future spirals—technology will transform spirals without placing program execution at risk

Management Rigor
Focused on time-phased priorities, cost performance, and personnel development
Supported by a sound acquisition strategy that promotes innovation
Strategy-to-Task-to-Technology Process

- Nation's Vision
- NSPD
- Science Objectives & Concepts of Operations
- Mission Concepts & Requirements
- Tasks & Technology Roadmaps
- Operational Environments
- Available Technologies
- Deficiencies
- Required Features & Characteristics
- Trade Studies
- Affordable System Design & Development
- System Requirement Documents
- PROGRAM
- MISSION
- ENGINEERING
- Modeling/Simulation
- PROGRAM
- MISSION
- OPERATIONS
- Modeling & Simulation
- Investment Plan
Requirements and Technology Investment Flow

Enterprises

Prometheus

Constellation

Spiral Development

Prototype

Block I

Block II

Mature Design

Technology Maturation

Technologies
Constellation Program Acquisition
Strategy Overview (Baseline)

<table>
<thead>
<tr>
<th>Pre MS A Concept Ref (RFI) Q3 FY04</th>
<th>Pre-MS A Tech Dev’mt (RFP) Q3 FY05</th>
<th>MS A Program Initiation FY06</th>
<th>MS B Design Readiness Review /Demo 2008</th>
<th>Unmanned CEV Flight 2011</th>
<th>MS C Manned CEV Flight 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSP</td>
<td>NGLT</td>
<td>Early Contractor Involvement</td>
<td>System Development &amp; Integration</td>
<td>System Development &amp; Demonstration</td>
<td></td>
</tr>
</tbody>
</table>

Target
Moon
Mars

Prometheus

2015 (Objective)
2020 (Threshold)
Cross-Agency, System of Systems Integration
(Lunar Architecture – Illustrative Example Only)

- Transit and Launch Systems
  - Crew Transport
  - Crew Support
  - Launch

- Surface and Orbital Systems
  - Landing Systems
  - Surface Mobility
  - Comm/Nav

- Biomedical Countermeasures and Limits
  - Resource Identification and Characterization

- Supporting Research

- Technology Options
  - Long-Duration Habitation
  - Pre-Positioned Propellants
  - Surface Power and Resource Utilization

- Commonality / Evolvability For Future Missions

The Human - an Essential Element of the System of Systems
Major Elements

Project Constellation
  – Development of a Crew Exploration Vehicle

• Project Prometheus
  – The Nuclear Systems Program…

• Advanced Space Technology
  – Advance and mature a range of novel concepts and high-leverage technologies and transition them to application in the Exploration Systems Enterprise and other NASA Enterprises…

• Technology Maturation
  – Develop and validate novel concepts and high-leverage technologies to enable safe, affordable, effective and sustainable human and robotic exploration…

• Innovative Technology Transfer Partnerships
  – Enable the creative use of intellectual assets both inside and outside NASA to meet Agency needs and to benefit the Nation…
<table>
<thead>
<tr>
<th>Robotic Precursors</th>
<th>Surface Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift Capability</td>
<td>Lander Extensions</td>
</tr>
<tr>
<td>Crew Transfer Capability (CEV)</td>
<td>Habitation</td>
</tr>
<tr>
<td>Life Support</td>
<td>Large Structure Transport</td>
</tr>
<tr>
<td>Scalable Propulsion</td>
<td>Assembly</td>
</tr>
<tr>
<td>Tools</td>
<td>Large Scale Power Generation</td>
</tr>
<tr>
<td>Exploration Science Instrumentation</td>
<td>✓ Communications Infrastructure</td>
</tr>
</tbody>
</table>

✓ = Specific programs underway. Other components being addressed through on-going analysis/trades
Exploration Systems Enterprise
FY 2005 President’s Budget Detail for FY 2005

Exploration Systems
Human Robotic Technology
   Project Prometheus
      JIMO
      Nuclear Propulsion
Technology Maturation
   High Energy Space Systems Technology
   Advanced Space Systems and Platform Technology
   Advanced Space Operations Technology
   Lunar & Planetary Surface Operations Technology
   In-Space Tech Experiments
   Future Competitive Opportunities
Advance Space Technology
   Advanced Studies, Concepts & Tools
   Advanced Materials & Structural Concepts
   Communications, Computing, Electronic & Imaging
   Software, Intelligent Systems & Modeling
   Power, Propulsion & Chemical Systems

Innovative Tech Trans Partnerships
   SBIR
   SBTTR
   Technology Transfer Agents
   SBIR/STTR Program Management

Centennial Challenge
Transportation Systems
   Crew Exploration Vehicle
   Space Launch Initiative (SLI)
Constellation Acquisition Processes and Personnel

• Building Acquisition Approach Using Both DoD 5000 and NASA 7120.5B → C
  – Incorporated Spiral Development
  – Established Program Review Process – Event Driven
  – Completed WBS
  – Drafting Single Acquisition Management Plan (SAMP) to Include:
    – Key Performance Parameters (KPP)
    – Acquisition Program Baseline (APB)
    – Integrated Baseline Reviews (IBR)
    – Independent Cost Estimates
  – Risk Management Plan in Development; Reviewing Automation Tools

• Personnel
  – Key Personnel & major PM’s Selected and Onboard for Constellation and CEV
  – Two CEV senior managers scheduled for DoD acquisition Training at DSMC
To reflect Nation’s Vision for Space Exploration, Project Prometheus has been augmented as follows:

- **Advanced Space Nuclear Propulsion Technology**
  - Issued technology development solicitation for High Power Electric Propulsion; Supports technologies leading to potential application in human missions
  - Initiated studies to assess use of fission technologies in potential support of human Moon and Mars exploration missions

- **Jupiter Icy Moons Orbiter (JIMO)**
  - Augmented scope of three Phase A contracts for JIMO to add studies for potential derived applications of JIMO technologies:
    - Lunar surface power
    - Mars surface power
    - Mars cargo transporter (5000 kg class)
    - Follow-on outer planetary exploration
  - Added scope to planned JIMO Phase B work for the same four derived applications as above
Human & Robotic Technology Status

• Various Technology Programs Consolidated Under H&RT
  – Advanced Space Technology Program (formerly Mission and Science Measurement Technologies (MSM))
  – Innovative Technology Transfer Program (including SBIR/STTR)
  – Technology Maturation Program
  – Plus…Project Prometheus, Centennial Challenges (discussed elsewhere)

• Technologies Inventoried and Mapped into Exploration Systems Requirements
  – Initial Capability Gaps Identified: i.e. Integrated Vehicle Health Management, Inflight refueling, Inspace assembly…

• Investment Strategy Established to Fund Technologies that:
  – Fills Gaps and Improves Affordability by focusing on “System of System” Improvements such as Reusability, Reliability, System Effectiveness…
  – Emphasizes technologies of broad potential value

• First Broad Agency Announcement (BAA) for Advanced Technology Research & Development in Exploration to be Awarded in Oct 2004

• Follow-on Award in Apr 2005 Will Address Specific Technology Gaps in Project Constellation Spiral I Which Includes CEV
Near-Term Acquisition Strategy

<table>
<thead>
<tr>
<th>FY 04</th>
<th>FY 05</th>
<th>FY 06</th>
<th>FY 07</th>
<th>FY 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Government Requirements Development

- CEV Level 1 Requirements
- CEV Level 2
- Industry Support

RFI / Exploration Systems Release

- Center Tasks

BAA / Project Constellation Exploration & Refinement Release Award

- Exercise Option

BAA / Tech Maturation / ASTP Release Award

- Tech Development / Risk Reduction

BAA

RFP / CEV Spiral 1

- MS A
- MS B - Program Initiation

- 2008 Demo Dev/Spiral 1 (2014 Manned Flight) Preliminary Design Contractor A

- Detailed Design & Dev

Acquisition strategy to be continuously refined based on responses to RFI, BAAs, RFPs, Requirements team activities, etc.
Centennial Challenges

• **Description:**
  – A program of contests in which NASA will establish cash awards to stimulate innovation and competition in technical areas of interest to Civil Space and Aeronautics.
  – Specifically, Centennial Challenges is a low risk program designed to:
    • Encourage innovation in ways that standard federal procurement cannot
    • Enrich NASA research by reaching new communities
    • Help address technology pitfalls
    • Promote returns that outweigh the investment
    • Educate, inspire and motivate the public

• **Innovation Sought:**
  – Revolutionary advances in fundamental technologies
  – Breakthrough robotic capabilities
  – Very low cost space missions

• **Participants:**
  – U.S. citizens who are not federal employees (including FFRDCs) unless otherwise specified in challenge rules
  – Industry, academia, non-profits, students, individuals

• **Activities:**
  – Announcements released for:
    • Prize formulation workshop involving external community (15-16 June)
    • Informational website announced and active (www.centennialchallenges.nasa.gov)
International Cooperation Strategy
Work to be Done

• Key objectives developed:
  – Promote common objectives and cooperative/complementary efforts for space exploration
  – Utilize international capabilities to help close capability gaps and develop breakthrough technologies

• Issues to be worked
  – Potential partners and levels of involvement
  – How does NASA protect its program’s critical path
  – Return-on-Investment for participating partners
  – Length of time to gain approval for a cooperation plan through all interested parties

• Actions in-work
  – Establishing International Cooperation IPT with Code I (External Relations) serving as co-lead to develop and implement a strategy for international participation
  – Conducting study of program management implications of International Space Station (ISS) cooperation strategy.
  – Evaluating current ISS group for potential partners/cooperation
  – Developing a comprehensive set of lessons learned and recommended principles for international participation
  – Continuing to work with the JSF/MDA Program Offices to facilitate the transfer of international cooperation best practices, lessons learned and mgmt principles
Office of Exploration Systems

- Cross Agency Focus
- Focused, prioritized requirements based on a common operational concept
- Spiral, modular transformation
  - Development in stages (spirals) with evolving modular components
  - Technology maturation for inclusion in future spirals
- Mgmt rigor focused on scheduled priorities, cost performance, and personnel development

Requirements Division

- Crew Exploration Vehicle (CEV) Level 1 requirements and concepts of operations
- Lunar Orbiter and Lunar Lander Mission Level 1 requirements with supporting documentation
- Prometheus Level 1 capability development requirements
- Tech maturation plan

Development Division

- Work Breakdown Structure (WBS) based on requirements for Exploration Systems
- Re-aligned Advanced Space Technology, Technology Maturation, and Space Transportation technology projects plus OSP and NGLT lessons-learned
- Investment Plan based on WBS gap analysis / Industry concept studies
- Award Prometheus/JIMO follow-on contract for tech maturation
Development Division (Cont’d)

- Single Acquisition Management Plan Framework to include:
  - Key Performance Parameters (KPPs), and Operational Thresholds and Objectives
  - Spiral Development Objectives and Milestones
  - Acquisition Strategy/Acquisition Program Baseline (APB)
  - Performance-Based measures for cost, schedule & performance
    - Integrated Baseline Reviews, EVMS tracking, Risk Analysis and Mitigation, Entrance/Exit Criteria…

Business Operations Division

- Acquisition strategy & business formulation
- Resource management
  - Establish disciplined funds obligation & cost execution process
  - Match workforce competencies with mission needs
- Program assessment
  - Create integrated program & financial management module (EVMS)
- Conduct several NASA / Industry Days
- Complete charter and first draft of Exploration Systems Master Plan
- Formulate / Implement / Enforce Broad Agency Announcement (BAA) Strategy
One Step at a Time

It is affordable and sustainable
• Paced by experience, technology readiness and flexibility
• Establishing Stepping Stones
• Developing Building Blocks – technology to enable each successive step
• Employing New Approaches – spiral development – build and test
• Fiscal Acquisition Management – Disciplined

It is focused and achievable
• Responds to the nation’s call for a long term space vision
• We have an integrated agency approach
• We have the talent, experience and leadership – recent successes and demonstrated management reforms
• We have the passion and commitment to succeed
Office of Exploration Systems

We’re not where we want to be,
We’re not where we’re going to be, **BUT** we’re certainly not where we were yesterday.

M.L. King Jr., Jan ‘68
Back-up
## Trade Studies

<table>
<thead>
<tr>
<th>Responsible Org</th>
<th>Task Identifier</th>
<th>Status</th>
<th>Title</th>
<th>Task Information</th>
<th>Areas of Focus</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T RQ</td>
<td>RPT 0001.GIUSC</td>
<td>Released</td>
<td>Lunar Design Reference Mission 2</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0002.GIUSC</td>
<td>Released</td>
<td>Lunar Architecture Trade Studies</td>
<td>X X X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0004.GIUSC</td>
<td>Released</td>
<td>Lunar Surface Element Study - Crew Systems</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0005.GIUSC</td>
<td>In Negotiation</td>
<td>Lunar Surface Element Study - Power</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0005.GIUSC</td>
<td>In Negotiation</td>
<td>Exploration OIA Capability Assessment</td>
<td>X X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>In Draft</td>
<td>Lunar Testing</td>
<td>X</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0007.GIUSC</td>
<td>In Negotiation</td>
<td>Human-Rated Launch Vehicle Requirements</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0008.GIUSC</td>
<td>In Draft</td>
<td>Launch Vehicle Special Studies</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0009.GIUSC</td>
<td>In Draft</td>
<td>UOGC</td>
<td>S S L S S S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0011.GIUSC</td>
<td>In Draft</td>
<td>Risk-Based Analysis Capability</td>
<td>S S L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0012.GIUSC</td>
<td>In Draft</td>
<td>MBS Prototyping</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0013.GIUSC</td>
<td>In Draft</td>
<td>Systems Engineering and Project Management Capability</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0014.GIUSC</td>
<td>In Draft</td>
<td>MBS HW, SW and personnel Purchases</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0015.GIUSC</td>
<td>In Negotiation</td>
<td>Concepts Development</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0016.GIUSC</td>
<td>In Draft</td>
<td>Ops and processing facilities</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0017.GIUSC</td>
<td>In Negotiation</td>
<td>Agency Requirements</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0018.GIUSC</td>
<td>In Negotiation</td>
<td>Draft Requirements</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0019.GIUSC</td>
<td>In Negotiation</td>
<td>LDGM/2-Focused Trades</td>
<td>X X X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0020.GIUSC</td>
<td>In Negotiation</td>
<td>LDGM/3A Trades</td>
<td>X X X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0021.GIUSC</td>
<td>In Negotiation</td>
<td>Special CEV Studies (SS)</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0022.GIUSC</td>
<td>In Draft</td>
<td>Special CEV Studies</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0023.GIUSC</td>
<td>In Negotiation</td>
<td>Level 2 Trains</td>
<td>X X X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0024.GIUSC</td>
<td>In Draft</td>
<td>JIMO Architecture A</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T RQ</td>
<td>RPT 0025.GIUSC</td>
<td>In Draft</td>
<td>JIMO Architecture B</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

### Industry Concept Integration

- S S S S S S S S S S S S S S

### Trans

- In Negotiation: Sensitivity Analysis of Space Transportation Impacts on Architectures | X X | L
- In Negotiation: Modularity Impacts to Space Transportation System | X X | L
- In Negotiation: Integrated Space Transportation Plan Analysis | X X | L
- In Negotiation: NASA Space Transportation Traffic Model and Risk Analysis for Space Exploration | S S L S S |
- In Negotiation: Earth-to-Orbit (ETO) Trade Study for Future Moon-Mars Exploration | X X | S S S L
- In Draft: Lunar Strategy | X | S
- In Draft: Integrated Human-Robotic Approach | X | X
- In Draft: Human Health and Performance | X | X
- In Draft: Nuclear Investment Strategy | X | X

### Const

- In Negotiation: Proposal for Configuration Management (CM) Approach | X | L
- In Negotiation: OEE Enterprise Work Breakdown Structure (WBS) Development | X S S S S S S S S L S |
- In Negotiation: Derived Level Risk Management Approach | X | L
- In Negotiation: Common Term Glossary Development | X | L
- Complete: NIST Program Content Reference Assessment | X S S S S S S S S L S |
- Complete: Preliminary Space Transportation Studies | X X | S S S S S S L S |
- Complete: Heavy Lift Launch Vehicles | X X | S L
- Complete: Heavy Lift Launch Vehicles | X X | S L
- Complete: Provide Program Control and Management Documentation | X | L
- Complete: Provide Report on Facilities Requirements for Space Transportation Development | X | S S S S S S S L
## Requirements Roadmap

### FY 2004 Schedule

<table>
<thead>
<tr>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>W2</td>
<td>W3</td>
<td>W4</td>
<td>W1</td>
<td>W2</td>
<td>W3</td>
</tr>
<tr>
<td>W4</td>
<td>W1</td>
<td>W2</td>
<td>W3</td>
<td>W4</td>
<td>W1</td>
<td>W2</td>
</tr>
<tr>
<td>W2</td>
<td>W3</td>
<td>W4</td>
<td>W1</td>
<td>W2</td>
<td>W3</td>
<td>W4</td>
</tr>
<tr>
<td>W3</td>
<td>W4</td>
<td>W1</td>
<td>W2</td>
<td>W3</td>
<td>W4</td>
<td>W1</td>
</tr>
<tr>
<td>W4</td>
<td>W1</td>
<td>W2</td>
<td>W3</td>
<td>W4</td>
<td>W1</td>
<td>W2</td>
</tr>
<tr>
<td>W2</td>
<td>W3</td>
<td>W4</td>
<td>W1</td>
<td>W2</td>
<td>W3</td>
<td>W4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### FY 2004 Schedule Details

- **BAA/RFI**
- **RFI Release (white papers)**
- **RFI Inputs In (white papers)**
- **BAA for CE&R Release**
- **BAA ($) Award**
- **Draft Level 1 Requirements**

### Requirements Formulation
- **Ground rules & Assumptions, Constraints, FOMs**
- **Initial Trade Tree**
- **Initial Gap Assessment**

### Architecture / ConOps Development
- **Broad Trades Cost & Perf**
- **Trade Tree Trim**
- **Focused Trades**

### Technology / Capability Gap Analysis
- **Draft ConOps to JSAC**
- **Update ConOps(s)**

### Tools
- **Tool Selection**
- **Tool Acquisition**
- **Tool Requirements Documented**

---

**FY 2004 Schedule**

- **March**
  - W1
  - W2
  - W3
  - W4

- **April**
  - W1
  - W2
  - W3
  - W4

- **May**
  - W1
  - W2
  - W3
  - W4

- **June**
  - W1
  - W2
  - W3
  - W4

- **July**
  - W1
  - W2
  - W3
  - W4

- **August**
  - W1
  - W2
  - W3
  - W4

- **September**
  - W1
  - W2
  - W3
  - W4
FY04 Source Selections
Concept Exploration & Refinement

- **Designation:** BAA 04-03
- **Purpose:** Solicit Industry Concepts for Moon Exploration and CEV Design
- **Solicitation**
  - Vehicle: BAA
  - Awards: Up to 5
  - Anticipated Responses: 50-150
- **Personnel**
  - SSA: Development Programs
    - Lead
      - Technical: Hecker
      - Contracting: Stiles
      - RQ: TBD
  - Evaluators
    - DP: 4
    - RQ: 4
    - BO: 2 (PCO, Cost Analyst)
  - COR: TBD
- **Facilities**
  - Source Selection: TBD, Need Date
  - Paperless Tools: TBD, Need Date 29 April
- **Milestones**
  - Designate Leads: 23 Apr 04
  - Designate Evaluators: 29 Apr 04
  - Draft BAA for Comment: 30 Apr 04
  - Pre-solicitation Conference: 11 May 04
  - SSA Approve BAA: 14 May 04
  - BAA Release: 01 Jun 04
  - Responses Due: 02 Jul 04
  - Review Complete: 16 Jul 04
  - SSA Selection: 23 Jul 04
  - Award: 31 Jul 04
Evolutionary Acquisition

OR  Single Step to Full Capability?

Evolutionary Acquisition

• Spiral Development: The end-state requirements are not known at program initiation. Those requirements are refined through system development and demonstration, risk management and continuous user feedback

• Incremental Development: The end-state requirement is known, and that requirement is met over time by developing several increments, each dependent on available mature technology and resources

Key Considerations

• Urgency of Requirement
• Maturity of Key Technologies
• Interoperability, Supportability, and Affordability of Alternative Acquisition Approaches
• Cost/Benefit of Evolutionary vs. Single Step Approach
**Concept Exploration & Refinement (BAA)**

- **Solicitation: Broad Area Announcement (BAA):**
  - In support of Projects Constellation and Prometheus requirements development and acquisition strategy
  - Expected response from industry
  - Multiple Awards/Varying Response Times

- **Deliverables:**
  - Architectural Trade Studies and Risk Reduction Analyses
  - Concepts for Lunar Missions and Architecture
  - Concepts for CEV
  - Methods for incorporating TECHMAT into CEV and Lunar Architecture
  - Recommendations for Streamlining Acquisition

- **Purpose:**
  - Advanced Development of Potential Risk Reduction Concepts
  - Support Systems Integration and CEV contract process
  - Continued pursuit of innovative concepts determined to be feasible/affordable based on Jan RFI results and recommendations

Note: Additional BAA Procurement Cycles will further define the System-of-Systems operations concepts and perform integrated systems trade studies.
Early Concept Definition (RFI)

- **Solicitation: Request for Information (RFI):**
  - In support of Projects Constellation and Prometheus requirements development and acquisition strategy
  - Expected response from industry, academia, NASA centers, related commercial enterprises, etc.

- **Deliverables:**
  - Unfunded “White Papers” addressing key areas for further study and risk reduction

- **Purpose:**
  - Identification of areas for future trade studies & risk reduction activities
  - Identification of technical risk areas and cost drivers
  - Assessment of design drivers and other critical architecture considerations
  - Innovative concepts or considerations in key areas such as:
    - Sustainability
    - Affordability
    - Reliability & Safety
    - Launch Infrastructure
    - Crew size
    - Payloads
    - In-space repair
    - Maintenance & assembly
    - Lunar/Mars Commonality
    - Power/propulsion Issues
    - Acquisition Strategy/PM Tools
    - ETC.

**Timeline:**

- **May ‘04**: Actual Release
  - Apr 15, 2004
- **Jun ‘04**: Delivery/Review
- **Jul ‘04**: Review Complete

Output to help structure follow-on BAA and RFP
Spiral 1 CEV Development (RFP)

• Solicitation: Request for Proposal (RFP):
  – In support of Project Constellation’s development and acquisition strategy for unmanned CEV flight by 2011 and manned CEV flight by 2014
  – Expected response from major industry primes with multiple teaming arrangements possible
  – For competitive effects and further risk reduction, objective is to carry 2 contractors through preliminary design then down-select to single prime who best demonstrates:
    • Greatest performance / Lowest cost & schedule risk
    • Open design facilitating new technology insertion / Design compatibility for future spirals
    • Affordability, Supportability, Safety of Flight, Etc.

• Deliverables:
  – Major risk reduction activities and technology demonstrations to include 2008 1st flight CEV demonstration
  – Work Breakdown Structure (WBS), Integrated Master/Mgmt Plan (IMP), Integrated Master Schedule (IMS)
  – Plans: Risk Management, Resource allocation, Safety, T&E, Support, Producibility…
  – Integrated Baseline Review (IBR), Utilization of Earned Value Management; Quarterly program reviews to track/manage performance, cost, schedule, and risk
Spiral 1 CEV Development (RFP) Cont.

• Deliverables (Con’t):
  – Major test activities to demonstrate system performance / safety of flight
  – 2011 Unmanned flight demonstration
  – 2014 Manned CEV flight demonstration

• Purpose
  – Provide human space flight capability to support preparation for a human Lunar mission no later than 2020
  – Develop initial requirements / risk reduction activities supporting future Mars exploration
Development Programs Status

• Constellation
  – Initial strategy for CEV acquisition program complete
  – Spiral I of acquisition defined, focused on 2014 capability for manned spaceflight
  – Request for information released to industry, government, academia
  – Solicitation for CEV concepts to be released to industry in June 2004

• Prometheus
  – Jupiter icy moons orbiter (JIMO) acquisition strategy realigned with exploration systems
  – Nuclear power and propulsion level I requirements for exploration systems to be completed in May 2004
  – RFP for follow-on JIMO development to be awarded in Nov 2004
  – Secretary of Energy tasked the Department of Energy Office of Naval Reactors (NR) to support Project Prometheus

• Orbital Express
  – Continuing development with DARPA

• X-37
  – Completing approach & landing test vehicle (ALTV) and tech for orbital vehicle (OV)
  – Efforts will continue in FY05

• Demonstration of Automated Rendezvous Technology (DART)
  – Completed reviews for environmental test series readiness and design certification
  – Planning for Oct 2004 launch