Lunar Robotics
Dr. Rob Ambrose, NASA JSC
December 2007

- A look at the Constellation Lunar Architecture
 - Where can Robotics Play a Role?

- Turning those Concepts into Reality
 - NASA’s ETDP Human Robotics Systems Program
Lunar Architecture Campaign Level View
(Trade Set 1 ICP with integrated ATHLETE legs)

Cumulative Days on Surface

- Crew Size
- Mission Duration

1437 total surface days

Notes:
- Unpressurized, Liquid, & Gas carriers not shown
- Each Crewed Lander & Flight 1 has 500 kg of Science
- ICP/SA includes 2 kW of net power generation
- ICP/LA includes 10 kW of net power generation

Outpost Phases – A1

Test & Reconnaissance
Minimum Habitation Capability & Human Return to the Moon
Enhanced Mobility
Extended Mobility
Long Duration Outpost Capability
Outpost Phases – A2

Test & Reconnaissance Minimum Habitation Capability & Human Return to the Moon Enhanced Mobility

Extended Mobility Long Duration Outpost Capability

Lunar Outpost Surface Systems

- 2 kW Array (net)
- 10 kW Array (net)
- Integrated Cargo Pallet (ICP) (Supports / scavenges from crewed landers)
- Habitation Element
- Logistics Pantry
- Common Airlock with Lander
- ISRU Oxygen Production Plant
- Unpressurized Rover
- ATHLETE Mobility System (2)
- Small Pressurized Rover (SPR)
- ICP (Facilitates SPR docking & charging)
Architecture Concept – Mobile Habitat

- <20,000 Kg Payload
- Integrated Power
- Docking Together
- 1000+ Km Range

Architecture Concept – Small Pressurized Rover

- Fast Out the Door
- Radiation Protection
- Hatch Docking
- 100+ Km Range
NASA’s Exploration Technology Development Program

Turning the Cartoons into Reality
The Players

HRS
Technology Description (ATHLETE)

- Leadership
 - NASA JPL
 - B. Wilcox

- Technologies
 - Wheel-on-limb Mobility
 - Mobility & manipulation
 - Active suspension
 - Payload offloading
 - Habitat docking
 - Hatch mating

- Collaborations
 - Stanford (Latome)
 - Michelin (Switzerland)
HRS Technology Description (Chariot)

- **Leadership**
 - NASA JSC
 - Ambrose, Bluethmann, Junkin

- **Technologies**
 - Novel chassis kinematics
 - Active/Passive suspension
 - Upright crew accommodations
 - Chassis leveling
 - Small Pressurized Rover Ops

- **Collaborations**
 - ETDP Advanced Suits
 - ETDP Thermal Control
 - ETDP ISRU
 - ETDP Power

HRS Technology Description (Centaur)

- **Leadership**
 - NASA JSC
 - Ambrose, Diftler, Bluethmann

- **Technologies**
 - Autonomous Manipulation
 - Dexterity
 - Mobile Manipulation
 - Time Delayed Supervision
 - Astronaut Assistance
 - Surface Science

- **Collaborations**
 - UMass (Grupen)
 - MIT (Brooks)
 - Vanderbilt (Peters)
 - Many earlier grants
HRS Technology Description (K-10)

- **Leadership**
 - NASA ARC
 - Fong, Deans

- **Technologies**
 - Site survey sensing
 - Remote supervision
 - Mapping & prospecting

- **Collaborations**
 - Ball Aerospace
 - CMU

HRS Technology Description (Scarab)

- **Leadership**
 - NASA GRC & CMU
 - Whittaker, Caruso

- **Technologies**
 - Novel chassis kinematics
 - Integrated drill
 - Wheel spikes for drilling
 - Dark navigation

- **Collaborations**
 - CMU
 - NorCat
 - ETDP ISRU
Surface Scenario Video (2 minute)

Plans for FY08

- June 2008 Field Test
 - Desert West
 - Nevada, Washington, California
 - Architecture Landings
 - Landers 1, 2, 3 & 6
- October 2008 Field Test
 - Desert West
 - Architecture Landings
 - Landers 4 & 5
 - Long Range Excursion w/ Crew
- November 2008
 - Hawaii
 - ISRU Evaluations
 - O2 Production from Regolith
 - Prospecting
HRS Team
(7 NASA Centers and 10+ Companies)