Carnegie Mellon Robotics Institute | NASA ASTEP | EventScope

Life in the Atacama Header


News Down Arrow


Information Down Arrow

Astrobiology Down Arrow
 • The Atacama Desert
 • Finding Life
 • Instruments Down Arrow

Robotics Down Arrow

Images Down Arrow


Science Data
(best viewed in Firefox)


Add Yourself to the Atacama Mailing List

View the Atacama in 3D with Eventscope Button

Robotic Astrobiology
Seeking Life in Extreme Environments

Evidence suggests that the interior of the Chilean Atacama Desert, the most arid region on Earth, contains no living organisms. Yet, where the desert meets the Pacific Coastal Range, desiccation-tolerant microorganisms are known to exist. The gradient of biodiversity and habitats of life in the Atacama’s subregions remain unexplored.

Robotic field investigation will bring new scientific understanding of the Atacama as a habitat for life with distinct analogies to Mars. Our goal is to make genuine discoveries about the limits of life on Earth and to generate knowledge about life in extreme environments that can be applied to future planetary missions. In order to conduct this investigation, we will develop Robotic Astrobiology.

Field investigation over three years will use a rover to make transects of the Atacama with instruments to detect microorganisms and chlorophyll-based life forms and to characterize habitats. The rover will integrate panoramic imagers, microscopic imagers, spectrometers, as well as mechanisms for shallow subsurface access.

Robotic considerations in addition to instrument integration include platform configuration, planetary-relevant localization, complex obstacle negotiation, over-the-horizon navigation, and power-cognizant activity planning.

An architecture that coordinates these capabilities, provides health monitoring and fault recovery, and allows for variability in the degree of autonomy is vital to long-duration operations.

The measurement and exploration technique produced by this investigation combines long traverses, sampling measurements on a regional scale and detailed measurements of individual targets. When compared to the state of the art in robotic planetary exploration our approach will result in dramatic increase in the number of measurements made and data collected by rover instruments per command cycle. This result will translate into substantial productivity increases for future planetary exploration missions.


© 2003-2008 Carnegie Mellon University. All rights reserved. Webmaster.

Carnegie Mellon Logo Robotics Institute Logo Eventscope Logo NASA Logo